

Stat 310 — Mihai Anitescu Lecture 8

8.4.1 OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINTS

IFT for optimality conditions in the

equality-only case

- Problem: $(NLP) \min f(x)$ subject to c(x) = 0; $c: \mathbb{R}^n \to \mathbb{R}^m$
- Assumptions:
 - 1. x^* is a solution
 - 2. LICQ: $\nabla c(x)$ has full row rank.
- From LICQ: $\exists x^* = \left(\overrightarrow{x_D}, \overrightarrow{x_H} \right); \nabla c_{\mathcal{H}}(x^*) \in \mathbb{R}^{m \times m}; \nabla c_{\mathcal{H}}(x^*) \text{ invertible.}$
- From IFT:

$$\exists \mathcal{N}(x^*), \Psi(x_{\mathcal{D}}), \mathcal{N}(x_{\mathcal{D}}^*) \text{ such that } x \in \mathcal{N}(x^*) \cap \Omega \Leftrightarrow x_{\mathcal{H}} = \Psi(x_{\mathcal{D}})$$

• As a result x^* is a solution of NLP iff $x_{\mathcal{D}}^*$ solves unconstrained problem: $\min_{x_{\mathcal{D}}} f(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}}))$

Properties of Mapping

• From IFT:

$$c(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) = 0 \Rightarrow \nabla_{x_{\mathcal{D}}} c(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) + \nabla_{x_{\mathcal{H}}} c(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) \nabla_{x_{\mathcal{D}}} \Psi(x_{\mathcal{D}}) = 0$$

Two important consequences

$$(1) \nabla_{x_{\mathcal{D}}} \Psi(x_{\mathcal{D}}) = -\left[\nabla_{x_{\mathcal{H}}} c(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) \right]^{-1} \nabla_{x_{\mathcal{D}}} c(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}}))$$

$$(2) Z = \begin{bmatrix} I_{n-m} \\ \nabla_{x_{\mathcal{D}}} \Psi(x_{\mathcal{D}}) \end{bmatrix} \Rightarrow \nabla c(x) Z = 0 \Rightarrow \operatorname{Im}[Z] = \ker[\nabla c(x)]$$

First-order optimality conditions

• Optimality of unconstrained optimization problem

$$\nabla_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) = 0 \Rightarrow \nabla_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) + \nabla_{x_{\mathcal{H}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) \nabla_{x_{\mathcal{D}}} \Psi\left(x_{\mathcal{D}}^{*}\right) = 0 \Rightarrow \nabla_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) - \nabla_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) \left[\nabla_{x_{\mathcal{D}}} c\left(x_{\mathcal{D}}, \Psi\left(x_{\mathcal{D}}\right)\right)\right]^{-1} \nabla_{x_{\mathcal{D}}} c\left(x_{\mathcal{D}}, \Psi\left(x_{\mathcal{D}}\right)\right) = 0$$

• The definition of the Lagrange Multiplier Result in the first-order (Lagrange, KKT) conditions:

$$\begin{bmatrix} \nabla_{x_{\mathcal{D}}} f(x_{\mathcal{D}}^*, \Psi(x_{\mathcal{D}}^*)) & \nabla_{x_{\mathcal{H}}} f(x_{\mathcal{D}}^*, \Psi(x_{\mathcal{D}}^*)) \end{bmatrix} - \lambda^T \begin{bmatrix} \nabla_{x_{\mathcal{D}}} c(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) & \nabla_{x_{\mathcal{H}}} c(x_{\mathcal{D}}^*, \Psi(x_{\mathcal{D}}^*)) \end{bmatrix} = 0$$

$$\nabla f(x^*) - \lambda^T \nabla c(x^*) = 0$$

A more abstract and general proof

• Optimality of unconstrained optimization problem

$$D_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) = 0 \Rightarrow \nabla_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) + \nabla_{x_{\mathcal{D}}} f\left(x_{\mathcal{D}}^{*}, \Psi\left(x_{\mathcal{D}}^{*}\right)\right) \nabla_{x_{\mathcal{D}}} \Psi\left(x_{\mathcal{D}}^{*}\right) = 0 \Rightarrow \nabla_{x} f\left(x^{*}\right) Z = 0$$

- Using $\ker M \perp \operatorname{Im} M^T$; $\dim(\ker M) + \dim(\operatorname{Im} M^T) = \operatorname{nr} \operatorname{cols} M$
- We obtain: $\nabla_x f(x^*) Z = 0 \Rightarrow \nabla_x f(x^*)^T \in \ker(Z^T) = \operatorname{Im} \left[\nabla c(x^*)^T \right]$
- We thus obtain the optimality conditions:

$$\exists \lambda \in \mathbb{R}^m \text{ s.t. } \nabla_x f(x^*)^T = \nabla_x c(x^*)^T \lambda \Longrightarrow \nabla_x f(x^*) - \lambda^T \nabla_x c(x^*) = 0$$

The Lagrangian

- Definition $\mathcal{L}(x,\lambda)=f(x)-\lambda^T c(x)$
- Its gradient $\nabla \mathcal{L}(x,\lambda) = \left[\nabla f(x) \lambda^T \nabla c(x), c(x)^T\right]$

• Its Hessian
$$\nabla^2 \mathcal{L}(x,\lambda) = \begin{bmatrix} \nabla_{xx}^2 \mathcal{L}(x,\lambda) & \nabla c(x)^T \\ \nabla c(x) & 0 \end{bmatrix}$$

• Where
$$\nabla_{xx}^2 \mathcal{L}(x,\lambda) = \nabla_{xx}^2 f(x,\lambda) - \sum_{i=1}^m \lambda_i \nabla_{xx}^2 c_i(x,\lambda)$$

• Optimality conditions:

$$\nabla \mathcal{L}(x,\lambda) = 0$$

Second-order conditions

- First, note that: $Z^T \nabla^2_{xx} L(x_D, \Psi(x_D)) Z = D^2_{x_D x_D} f(x_D, \Psi(x_D)) \succ = 0$
- Sketch of proof: total derivatives in x_D :

$$D_{x_{\mathcal{D}}} f(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) = \nabla_{x_{\mathcal{D}}} f(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})) - \lambda (x_{\mathcal{D}}, \Psi(x_{\mathcal{D}}))^{T} \nabla_{x_{\mathcal{D}}} c(x_{\mathcal{D}}^{*}, \Psi(x_{\mathcal{D}})) = \nabla_{x_{\mathcal{D}}} \mathcal{L}((x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})), \lambda (x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})));$$

$$\nabla_{x_{\mathcal{D}}} f(x_{\mathcal{D}}^{*}, \Psi(x_{\mathcal{D}}^{*})) = \lambda (x_{\mathcal{D}}, \Psi(x_{\mathcal{D}}))^{T} \nabla_{x_{\mathcal{D}}} c(x_{\mathcal{D}}^{*}, \Psi(x_{\mathcal{D}}))$$

$$\nabla_{x_{\mathcal{D}}} f(x_{\mathcal{D}}^{*}, \Psi(x_{\mathcal{D}}^{*})) = \lambda (x_{\mathcal{D}}, \Psi(x_{\mathcal{D}}))^{T} \nabla_{x_{\mathcal{D}}} c(x_{\mathcal{D}}^{*}, \Psi(x_{\mathcal{D}}))$$

Second derivatives:

$$\begin{split} &D_{x_{\mathcal{D}}x_{\mathcal{D}}}f\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right) = \nabla_{x_{\mathcal{D}}}f\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right) - \lambda\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right)^{T}\nabla_{x_{\mathcal{D}}}c\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right) = \\ &\nabla_{x_{\mathcal{D}}x_{\mathcal{D}}}\mathcal{L}\left(\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right),\lambda\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right)\right) + \nabla_{x_{\mathcal{D}}}\Psi(x_{\mathcal{D}})^{T}\nabla_{x_{\mathcal{H}}x_{\mathcal{D}}}\mathcal{L}\left(\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right),\lambda\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right)\right) \\ &-D_{\mathcal{D}}\left(\lambda\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right)^{T}\right)\nabla_{x_{\mathcal{D}}}c\left(x_{\mathcal{D}},\Psi(x_{\mathcal{D}})\right) \end{split}$$

Computing Second-Order

Derivatives

• Expressing the second derivatives of Lagrangian

$$\nabla_{x_{\mathcal{H}}} f\left(x_{\mathcal{D}}^{*}, \Psi(x_{\mathcal{D}}^{*})\right) = \lambda\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)^{T} \nabla_{x_{\mathcal{H}}} c\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right) \Rightarrow$$

$$D_{x_{\mathcal{D}}} \left[\lambda\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)^{T}\right] \nabla_{x_{\mathcal{H}}} c\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right) = D_{x_{\mathcal{D}}} \left[\nabla_{x_{\mathcal{H}}} f\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right) - \underbrace{\lambda\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)^{T}}_{inactive} \nabla_{x_{\mathcal{H}}} c\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)\right] =$$

$$D_{x_{\mathcal{D}}} \nabla_{x_{\mathcal{H}}} \mathcal{L}\left(\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right), \underbrace{\lambda\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)^{T}}_{inactive}\right) = \nabla_{x_{\mathcal{D}}} \nabla_{x_{\mathcal{H}}} \mathcal{L}\left(\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right), \lambda\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)^{T}\right) +$$

$$\nabla_{x_{\mathcal{D}}} \Psi(x_{\mathcal{D}})^{T} \nabla_{x_{\mathcal{H}}} \nabla_{x_{\mathcal{H}}} \mathcal{L}\left(\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right), \lambda\left(x_{\mathcal{D}}, \Psi(x_{\mathcal{D}})\right)^{T}\right)$$

• Solve for total derivative of multiplier and replace conclusion follows.

Summary: Necessary Optimality

Conditions

• Summary:

$$\nabla \mathcal{L}(x^*, \lambda^*) = 0; \ Z^T \nabla_{xx}^2 L(x_{\mathcal{D}}^*, \Psi(x_{\mathcal{D}}^*)) Z \succ = 0$$

• Rephrase first order:

$$\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) = 0$$

• Rephrase second order necessary conditions.

$$\nabla_{x} c(x^{*}) w = 0 \Longrightarrow w^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) w \ge 0$$

Sufficient Optimality Conditions

• The point is a local minimum if LICQ and the following holds:

$$(1)\nabla_{x}\mathcal{L}\left(x^{*},\lambda^{*}\right) = 0; (2)\nabla_{x}c\left(x^{*}\right)w = 0 \Rightarrow \exists \sigma > 0 \ w^{T}\nabla_{xx}^{2}\mathcal{L}\left(x^{*},\lambda^{*}\right)w \geq \sigma \|w\|^{2}$$

• Proof: By IFT, there is a change of variables such that

$$u \in \mathcal{N}(0) \subset \mathbb{R}^{n-n_c} u \longleftrightarrow x(u); \, \tilde{x} \in \mathcal{N}(x^*), c(\tilde{x}) = 0 \Longleftrightarrow \exists \tilde{u} \in \mathcal{N}(0); \, \tilde{x} = x(\tilde{u})$$
$$\nabla_x c(x^*) \nabla_u x(\tilde{u}) \Big|_{\tilde{u}=0} = 0; \quad Z = \nabla_u x(\tilde{u})$$

• The original problem can be phrased as $\min_{u} f(x(u))$

Sufficient Optimality Conditions

• We can now piggy back on theory of unconstrained optimization, noting that.

$$\nabla_{u} f(x(u)) \Big|_{u=0} = \nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) = 0;$$

$$\nabla_{uu}^{2} f(x(u)) \Big|_{u=0} = Z^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) Z \succ 0; Z = \nabla_{u} x(u)$$

• Then from theory of unconstrained optimization we have a local isolated minimum at 0 and thus the original problem at x^* . (following the local isomorphism above)

Another Essential Consequence

• If LICQ+ second-order conditions hold at the solution x^* , then the following matrix must be nonsingular (EXPAND).

$$\begin{bmatrix} \nabla_{xx}^2 \mathcal{L}(x^*, \lambda^*) & \nabla_x c(x^*) \\ \nabla_x^T c(x^*) & 0 \end{bmatrix}$$

• The system of nonlinear equations has an invertible Jacobian,

$$\left| \begin{array}{c} \nabla_{x} \mathcal{L} \left(x^{*}, \lambda^{*} \right) \\ c \left(x^{*} \right) \end{array} \right| = 0$$

8.4.2 FIRST-ORDER OPTIMALITY CONDITIONS FOR MIXED EQ AND INEQ CONSTRAINTS

The Lagrangian

• Even in the general case, it has the same expression

$$\mathcal{L}(x) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{A}} \lambda_i c_i(x)$$

First-Order Optimality Condition Theorem

Suppose that x^* is a local solution of (12.1), that the functions f and c_i in (12.1) are continuously differentiable, and that the LICQ holds at x^* . Then there is a Lagrange multiplier vector λ^* , with components λ_i^* , $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at (x^*, λ^*)

 $\lambda_i^* \ge 0$, for all $i \in \mathcal{I}$,

$$\nabla_{x} \mathcal{L}(x^*, \lambda^*) = 0,$$

$$c_{i}(x^*) = 0, \quad \text{for all } i \in \mathcal{E},$$

$$c_{i}(x^*) \geq 0, \quad \text{for all } i \in \mathcal{I},$$

$$(12.34b)$$

$$(12.34c)$$

$$\lambda_i^* c_i(x^*) = 0$$
, for all $i \in \mathcal{E} \cup \mathcal{I}$. (12.34e)

(12.34d)

Equivalent Form:

$$\nabla f(x^*) - \lambda_{\mathcal{A}(x^*)}^T \nabla c_{\mathcal{A}(x^*)}(x^*) = 0 \Rightarrow \text{Multipliers are unique } !!$$

Sketch of the Proof

• If x^* is a solution of the original problem, it is also a solution of the problem.

$$\min f(x)$$
 subject to $c_{A(x^*)}(x) = 0$

 From the optimality conditions of the problem with equality constraints, we must have (since LICQ holds)

$$\exists \{\lambda_i\}_{i \in \mathcal{A}(x^*)} \quad \text{such that} \quad \nabla f(x^*) - \sum_{i \in \mathcal{A}(x^*)} \lambda_i \nabla c_i(x^*) = 0$$

• But I cannot yet tell by this argument $\lambda_i \ge 0$

$$\lambda_i \geq 0$$

Sketch of the Proof: The sign of the

• Assume now one multiplier has the "wrong" sign. That is

 $j \in \mathcal{A}(x^*) \cap \mathcal{I}, \quad \lambda_j < 0$

- Since LICQ holds, we can construct a feasible path that "takes off" from that constraint (inactive constraints do not matter locally)
- $c_{\mathcal{A}(x^*)}(\tilde{x}(t)) = te_j \Rightarrow \tilde{x}(t) \in \Omega$ Define $b = \frac{d}{dt}\tilde{x}(t)_{t=0} \Rightarrow \nabla c_{\mathcal{A}(x)}b = e_j$ $\frac{d}{dt} f(\tilde{x}(t))_{t=0} = \nabla f(x^*)^T b = \lambda_{c_{A(x)}}^T \nabla c_{A(x)} b = \lambda_j < 0 \quad \Rightarrow$ $\exists t_1 > 0, \quad f(\tilde{x}(t_1)) < f(\tilde{x}(0)) = f(x^*), \quad \text{CONTRADICTION!!}$

Strict Complementarity

• It is a notion that makes the problem look "almost" like an equality.

Definition 12.5 (Strict Complementarity).

Given a local solution x^* of (12.1) and a vector λ^* satisfying (12.34), we say that the strict complementarity condition holds if exactly one of λ_i^* and $c_i(x^*)$ is zero for each index $i \in \mathcal{I}$. In other words, we have that $\lambda_i^* > 0$ for each $i \in \mathcal{I} \cap \mathcal{A}(x^*)$.

8.5 SECOND-ORDER CONDITIONS

Critical Cone

- The subset of the tangent space, where the objective function does not vary to first-order.
- The book definition.

$$\mathcal{C}(x^*, \lambda^*) = \{ w \in \mathcal{F}(x^*) \mid \nabla c_i(x^*)^T w = 0, \text{ all } i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* > 0 \}.$$

• An even simpler equivalent definition.

$$C(x^*, \lambda^*) = \left\{ w \in T_{\Omega}(x^*) \middle| \nabla f(x^*)^T w = 0 \right\}$$

Rephrasing of the Critical Cone

• By investigating the definition

$$\begin{cases} \nabla c_i (x^*)^T w = 0 & i \in \mathcal{E} \\ \nabla c_i (x^*)^T w = 0 & i \in \mathcal{A}(x^*) \cap \mathcal{I} & \lambda_i^* > 0 \\ \nabla c_i (x^*)^T w \ge 0 & i \in \mathcal{A}(x^*) \cap \mathcal{I} & \lambda_i^* = 0 \end{cases}$$

• In the case where strict complementarity holds, the cones has a MUCH simplex expression.

$$w \in \mathcal{C}(x^*, \lambda^*) \Leftrightarrow \nabla c_i(x^*) w = 0 \ \forall \ i \in \mathcal{A}(x^*)$$

Statement of the Second-Order Conditions

Theorem 12.5 (Second-Order Necessary Conditions).

Suppose that x^* is a local solution of (12.1) and that the LICQ condition is satisfied. Let λ^* be the Lagrange multiplier vector for which the KKT conditions (12.34) are satisfied. Then

$$w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w \ge 0$$
, for all $w \in \mathcal{C}(x^*, \lambda^*)$. (12.57)

- How to prove this? In the case of Strict Complementarity the critical cone is the same as the problem constrained with equalities on active index.
- Result follows from equality-only case.

Statement of second-order sufficient conditions

Theorem 12.6 (Second-Order Sufficient Conditions).

Suppose that for some feasible point $x^* \in \mathbb{R}^n$ there is a Lagrange multiplier vector λ^* such that the KKT conditions (12.34) are satisfied. Suppose also that

$$w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0$$
, for all $w \in \mathcal{C}(x^*, \lambda^*)$, $w \neq 0$. (12.65)

Then x^* is a strict local solution for (12.1).

• How do we prove this? In the case of strict complementarity again from reduction to the equality case.

$$x^* = \operatorname{arg\,min}_x f(x)$$
 subject to $c_A(x) = 0$

How to derive those conditions in the other case?

• Use the slacks to reduce the problem to one with equality constraints.

$$\min_{x \in \mathbb{R}^n, z \in \mathbb{R}^{n_I},} \qquad f(x)$$

$$s.t. \qquad c_E(x) = 0$$

$$\left[c_I(x)\right]_j - z_j^2 = 0 \quad j = 1, 2, \dots n_I$$

- Then, apply the conditions for equality constraints.
- I will assign it as homework.

Summary: Why should I care about

Lagrange Multipliers?

• Because it makes the optimization problem in principle equivalent to a nonlinear equation.

$$\begin{bmatrix} \nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) \\ c_{\mathcal{A}}(x^{*}) \end{bmatrix} = 0; \det \begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) & \nabla_{x} c_{\mathcal{A}}(x^{*}) \\ \nabla_{x}^{T} c_{\mathcal{A}}(x^{*}) & 0 \end{bmatrix} \neq 0$$

• I can use concepts from nonlinear equations such as Newton's for the algorithmics.

Section 9 Fundamentals of Algorithms for Constrained Optimization

9.1 TYPES OF CONSTRAINED OPTIMIZATION ALGORITHMS

Types of Optimization Algorithms

- All of the algorithms solve iteratively a simpler problem.
 - Penalty and Augmented Lagrangian Methods.
 - Sequential Quadratic Programming.
 - Interior-point Methods.
- The approach follows the usual divide-and-conquer approach:
 - Constrained Optimization-
 - Unconstrained Optimization
 - Nonlinear Equations
 - Linear Equations

Quadratic Programming Problems

- Algorithms for such problems are interested to explore because
 - 1. Their structure can be efficiently exploited.
 - 2. They form the basis for other algorithms, such as augmented Lagrangian and Sequential quadratic programming problems.

$$\min_{x} \quad q(x) = \frac{1}{2}x^{T}Gx + x^{T}c$$
subject to
$$a_{i}^{T}x = b_{i}, \quad i \in \mathcal{E},$$

$$a_{i}^{T}x \geq b_{i}, \quad i \in \mathcal{I},$$

Penalty Methods

- Idea: Replace the constraints by a penalty term.
- Inexact penalties: parameter driven to infinity to recover solution. Example:

$$x^* = \arg\min f(x)$$
 subject to $c(x) = 0 \Leftrightarrow$

$$x^{\mu} = \arg\min f(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x); \ x^* = \lim_{\mu \to \infty} x^{\mu} = x^*$$

Solve with unconstrained optimization

• Exact but nonsmooth penalty – the penalty parameter can stay finite.

$$x^* = \arg\min f(x)$$
 subject to $c(x) = 0 \Leftrightarrow x^* = \arg\min f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)|; \mu \ge \mu_0$

Augmented Lagrangian Methods

• Mix the Lagrangian point of view with a penalty point of view.

$$x^* = \arg\min f(x) \text{ subject to } c(x) = 0 \Leftrightarrow$$

$$x^{\mu,\lambda} = \arg\min f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x) \Rightarrow$$

$$x^* = \lim_{\lambda \to \lambda^*} x^{\mu,\lambda} \text{ for some } \mu \ge \mu_0 > 0$$

Sequential Quadratic Programming

Algorithms

• Solve successively Quadratic Programs.

$$\min_{p} \frac{1}{2} p^{T} B_{k} p + \nabla f(x_{k})$$
subject to
$$\nabla c_{i}(x_{k}) d + c_{i}(x_{k}) = 0 \quad i \in \mathcal{E}$$

$$\nabla c_{i}(x_{k}) d + c_{i}(x_{k}) \ge 0 \quad i \in \mathcal{I}$$

- It is the analogous of Newton's method for the case of constraints if $B_k = \nabla^2_{xx} \mathcal{L}(x_k, \lambda_k)$
- But how do you solve the subproblem? It is possible with extensions of simplex which I do not cover.
- An option is BFGS which makes it convex.

Interior Point Methods

• Reduce the inequality constraints with a barrier

$$\min_{x,s} f(x) - \mu \sum_{i=1}^{m} \log s_{i}$$
subject to
$$c_{i}(x) = 0 \qquad i \in \mathcal{E}$$

$$c_{i}(x) - s_{i} = 0 \qquad i \in \mathcal{I}$$

• An alternative, is use a penalty as well:

$$\min_{x} f(x) - \mu \sum_{i \in \mathcal{I}} \log s_i + \frac{1}{2\mu} \sum_{i \in \mathcal{I}} (c_i(x) - s)^2 + \frac{1}{2\mu} \sum_{i \in \mathcal{E}} (c_i(x))^2$$

• And I can solve it as a sequence of unconstrained problems!

9.2 MERIT FUNCTIONS AND FILTERS

Feasible algorithms

- If I can afford to maintain feasibility at all steps, then I just monitor decrease in objective function.
- I accept a point if I have enough descent.
- But this works only for very particular constraints, such as linear constraints or bound constraints (and we will use it).
- Algorithms that do that are called feasible algorithms.

Infeasible algorithms

- But, sometimes it is VERY HARD to enforce feasibility at all steps (e.g. nonlinear equality constraints).
- And I need feasibility only in the limit; so there is benefit to allow algorithms to move on the outside of the feasible set.
- But then, how do I measure progress since I have two, apparently contradictory requirements:
 - Reduce infeasibility (e.g. $\sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} \max\{-c_i(x), 0\}$)
 - Reduce objective function.
 - It has a multiobjective optimization nature!

9.2.1 MERIT FUNCTIONS

Merit function

• One idea also from multiobjective optimization: minimize a weighted combination of the 2 criteria.

$$\phi(x) = w_1 f(x) + w_2 \left[\sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} \max \{-c_i(x), 0\} \right]; \quad w_1, w_2 > 0$$

- But I can scale it so that the weight of the objective is 1.
- In that case, the weight of the infeasibility measure is called "penalty parameter".
- I can monitor progress by ensuring that $\phi(x)$ decreases, as in unconstrained optimization.

Nonsmooth Penalty Merit Functions

$$\phi_1(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-, \quad [z]^- = \max\{0, -z\}.$$

• It is called the 11 merit function.

Penalty parameter

• Sometimes, they can be even EXACT.

Definition 15.1 (Exact Merit Function).

A merit function $\phi(x; \mu)$ is exact if there is a positive scalar μ^* such that for any $\mu > \mu^*$, any local solution of the nonlinear programming problem (15.1) is a local minimizer of $\phi(x; \mu)$.

We show in Theorem 17.3 that, under certain assumptions, the ℓ_1 merit function $\phi_1(x; \mu)$ is exact and that the threshold value μ^* is given by

$$\mu^* = \max\{|\lambda_i^*|, i \in \mathcal{E} \cup \mathcal{I}\},\$$

Smooth and Exact Penalty

Functions

- Excellent convergence properties, but very expensive to compute.
- Fletcher's augmented Lagrangian:

$$\phi_{\scriptscriptstyle F}(x;\mu) = f(x) - \lambda(x)^T c(x) + \frac{1}{2} \mu \sum_{i \in \mathcal{E}} c_i(x)^2,$$

$$\lambda(x) = [A(x)A(x)^T]^{-1}A(x)\nabla f(x).$$

• It is both smooth and exact, but perhaps impractical due to the linear solve.

Augmented Lagrangian

• Smooth, but inexact.

$$\phi(x) = f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x) \Longrightarrow$$

- An update of the Lagrange Multiplier is needed.
- We will not uses it, except with Augmented Lagrangian methods themselves.

Line-search (Armijo) for

Nonsmooth Merit Functions

$$\phi_1(x; \mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-,$$

- How do we carry out the "progress search"?
- That is the line search or the sufficient reduction in trust region?
- In the unconstrained case, we had

$$f(x_k) - f(x_k + \beta^m d_k) \ge -\rho \beta^m \nabla f(x_k)^T d_k; \quad 0 < \beta < 1, 0 < \rho < 0.5$$

• But we cannot use this anymore, since the function is not differentiable.

Directional Derivatives of

Nonsmooth Merit Function

$$\phi_1(x; \mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-,$$

• Nevertheless, the function has a directional derivative (follows from properties of max function). EXPAND

$$D(\phi(x,\mu);p) = \lim_{t\to 0, t>0} \frac{\phi(x+tp,\mu) - \phi(x,\mu)}{t}; \quad D(\max\{f_1,f_2\},p) = \max\{\nabla f_1 p, \nabla f_1 p\}$$

- Line Search: $\phi(x_k,\mu) \phi(x_k + \beta^m p_k,\mu) \ge -\rho\beta^m D(\phi(x_k,\mu),p_k);$
- Trust Region

$$\phi(x_{k},\mu) - \phi(x_{k} + \beta^{m} p_{k},\mu) \ge -\eta_{1}(m(0) - m(p_{k}));$$

$$0 < \eta_{1} < 0.5$$

And How do I choose the

penalty parameter?

- VERY tricky issue, highly dependent on the penalty function used.
- For the 11 function, guideline is:

$$\mu^* = \max\{|\lambda_i^*|, i \in \mathcal{E} \cup \mathcal{I}\},\$$

- But almost always adaptive. Criterion: If optimality gets ahead of feasibility, make penalty parameter more stringent.
- E.g l1 function: the max of current value of multipliers plus safety factor (EXPAND)

9.2.2 FILTER APPROACHES

Principles of filters

 Originates in the multiobjective optimization philosophy: objective and infeasibility

$$h(x) = \sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} [c_i(x)]^-,$$

• The problem becomes:

$$\min_{x} f(x)$$
 and $\min_{x} h(x)$.

The Filter approach

Definition 15.2.

- (a) A pair (f_k, h_k) is said to dominate another pair (f_l, h_l) if both $f_k \leq f_l$ and $h_k \leq h_l$.
- (b) A filter is a list of pairs (f_l, h_l) such that no pair dominates any other.
- (c) An iterate x_k is said to be acceptable to the filter if (f_k, h_k) is not dominated by any pair in the filter.

Some Refinements

- Like in the line search approach, I cannot accept EVERY decrease since I may never converge.
- Modification:

A trial iterate x^+ is acceptable to the filter if, for all pairs (f_j, h_j) in the filter, we have that

$$f(x^+) \le f_j - \beta h_j$$
 or $h(x^+) \le h_j - \beta h_j$, $\beta \sim 10^{-5}$ (15.33)

9.3 MARATOS EFFECT AND CURVILINEAR SEARCH

Unfortunately, the Newton step may

not be compatible with penalty

- This is called the Maratos effect.
- Problem:

min
$$f(x_1, x_2) = 2(x_1^2 + x_2^2 - 1) - x_1$$
,
 $x_1^2 + x_2^2 - 1 = 0$.

- Note: the closest point on search direction (Newton) will be rejected!
- So fast convergence does not occur

Solutions?

- Use Fletcher's function that does not suffer from this problem.
- Following a step: $A_k p_k + c(x_k) = 0$.
- Use a correction that satisfies $A_k \hat{p}_k + c(x_k + p_k) = 0$.

$$\hat{p}_k = -A_k^T (A_k A_k^T)^{-1} c(x_k + p_k),$$

• Followed by the update or line search:

$$x_k + p_k + \hat{p}_k \qquad x_k + \tau p_k + \tau^2 \hat{p}_k$$

• Since $c(x_k + p_k + \hat{p}_k) = O(\|x_k - x^*\|^3)$ compared to $c(x_k + p_k) = O(\|x_k - x^*\|^2)$ corrected Newton step is likelier to be accepted.

Section 10: Quadratic Programming

Reference: Chapter 16, Nocedal and Wright.

10.1 GRADIENT PROJECTIONS FOR QPS WITH BOUND CONSTRAINTS

Projection

$$\min_{\mathbf{x}} \quad q(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T G \mathbf{x} + \mathbf{x}^T c$$

- The problem: subject to $l \le x \le u$,
- Like in the trust-region case, we look for a Cauchy point, based on a projection on the feasible set.
- G does not have to be psd (essential for AugLag)
- The projection operator:

$$P(x, l, u)_{i} = \begin{cases} l_{i} & \text{if } x_{i} < l_{i}, \\ x_{i} & \text{if } x_{i} \in [l_{i}, u_{i}], \\ u_{i} & \text{if } x_{i} > u_{i}. \end{cases}$$

The search path

 Create a piecewise linear path which is feasible (as opposed to the linear one in the unconstrained case) by projection of gradient.

$$x(t) = P(x - tg, l, u),$$
$$g = Gx + c;$$

Computation of breakpoints

Can be done on each component individually

$$\bar{t}_i = \begin{cases} (x_i - u_i)/g_i & \text{if } g_i < 0 \text{ and } u_i < +\infty, \\ (x_i - l_i)/g_i & \text{if } g_i > 0 \text{ and } l_i > -\infty, \\ \infty & \text{otherwise.} \end{cases}$$

• Then the search path becomes on each component:

$$x_i(t) = \begin{cases} x_i - tg_i & \text{if } t \le \bar{t}_i, \\ x_i - \bar{t}_i g_i & \text{otherwise.} \end{cases}$$

Line Search along piecewise linear

path

 Reorder the breakpoints eliminating duplicates and zero values to get

$$0 < t_1 < t_2 < \dots$$

• The path:

$$x(t) = x(t_{j-1}) + (\Delta t)p^{j-1}, \qquad \Delta t = t - t_{j-1} \in [0, t_j - t_{j-1}],$$

• Whose direction is:

$$p_i^{j-1} = \begin{cases} -g_i & \text{if } t_{j-1} < \bar{t}_i, \\ 0 & \text{otherwise.} \end{cases}$$

Line Search (2)

- Along each piece, $[t_{j-1},t_j]$ find the minimum of the quadratic $\frac{1}{2}x^TGx + c^Tx$
- This reduces to analyzing a one dimensional quadratic form of t on an interval.
- If the minimum is on the right end of interval, we continue.
- If not, we found the local minimum and the Cauchy point.

Subspace Minimization

Active set of Cauchy Point

$$\mathcal{A}(x^c) = \{i \mid x_i^c = l_i \text{ or } x_i^c = u_i\}.$$

Solve subspace minimization problem

$$\min_{x} q(x) = \frac{1}{2}x^{T}Gx + x^{T}c$$
subject to $x_{i} = x_{i}^{c}, i \in \mathcal{A}(x^{c}),$

$$l_{i} \leq x_{i} \leq u_{i}, i \notin \mathcal{A}(x^{c}).$$

• No need to solve exactly. For example truncated CG with termination if one inactive variable reaches bound.

Gradient Projection for QP

```
Algorithm 16.5 (Gradient Projection Method for QP). Compute a feasible starting point x^0; for k=0,1,2,\ldots if x^k satisfies the KKT conditions for (16.68) stop with solution x^*=x^k; Set x=x^k and find the Cauchy point x^c; Find an approximate solution x^+ of (16.74) such that q(x^+) \leq q(x^c) and x^+ is feasible; x^{k+1} \leftarrow x^+; end (for)
```

Or, equivalently, if projection does not advance from 0.